Random walks colliding before getting trapped

نویسندگان

  • Louigi Addario-Berry
  • Roberto I. Oliveira
  • Yuval Peres
  • Perla Sousi
چکیده

Let P be the transition matrix of a finite, irreducible and reversible Markov chain. We say the continuous time Markov chain X has transition matrix P and speed λ if it jumps at rate λ according to the matrix P . Fix λX , λY , λZ ≥ 0, then let X,Y and Z be independent Markov chains with transition matrix P and speeds λX , λY and λZ respectively, all started from the stationary distribution. What is the chance that X and Y meet before either of them collides with Z? For each choice of λX , λY and λZ with max(λX , λY ) > 0, we prove a lower bound for this probability which is uniform over all transitive, irreducible and reversible chains. In the case that λX = λY = 1 and λZ = 0 we prove a strengthening of our main theorem using a martingale argument. We provide an example showing the transitivity assumption cannot be removed for general λX , λY and λZ .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walk in an Alcove of an Affine Weyl Group, and Non-colliding Random Walks on an Interval

Abstract. We use a reflection argument, introduced by Gessel and Zeilberger, to count the number of k-step walks between two points which stay within a chamber of a Weyl group. We apply this technique to walks in the alcoves of the classical affine Weyl groups. In all cases, we get determinant formulas for the number of k-step walks. One important example is the region m > x1 > x2 > · · · > xn ...

متن کامل

Non - Colliding Random Walks , Tandem Queues , and Discrete Orthogonal Polynomial Ensembles

We show that the function h(x) = ∏ i<j(xj − xi) is harmonic for any random walk in Rk with exchangeable increments, provided the required moments exist. For the subclass of random walks which can only exit the Weyl chamber W = {x : x1 < x2 < · · · < xk} onto a point where h vanishes, we define the corresponding Doob h-transform. For certain special cases, we show that the marginal distribution ...

متن کامل

Ordered Random Walks

We construct the conditional version of k independent and identically distributed random walks on R given that they stay in strict order at all times. This is a generalisation of so-called non-colliding or non-intersecting random walks, the discrete variant of Dyson’s Brownian motions, which have been considered yet only for nearest-neighbor walks on the lattice. Our only assumptions are moment...

متن کامل

2 7 O ct 2 00 6 ORDERED RANDOM WALKS

We construct the conditional version of k independent and identically distributed random walks on R given that they stay in strict order at all times. This is a generalisation of so-called non-colliding or non-intersecting random walks, the discrete variant of Dyson’s Brownian motions, which have been considered yet only for nearest-neighbor walks on the lattice. Our only assumptions are moment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016